Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Adv Sci (Weinh) ; : e2400492, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569466

RESUMO

The cooperative diagnosis of non-coding RNAs (ncRNAs) can accurately reflect the state of cell differentiation and classification, laying the foundation of precision medicine. However, there are still challenges in simultaneous analyses of multiple ncRNAs and the integration of biomarker data for cell typing. In this study, DNA framework-based programmable atom-like nanoparticles (PANs) are designed to develop molecular classifiers for intra-cellular imaging of multiple ncRNAs associated with cell differentiation. The PANs-based molecular classifier facilitates signal amplification through the catalytic hairpin assembly. The interaction between PAN reporters and ncRNAs enables high-fidelity conversion of ncRNAs expression level into binding events, and the assessment of in situ ncRNAs levels via measurement of the fluorescent signal changes of PAN reporters. Compared to non-amplified methods, the detection limits of PANs are reduced by four orders of magnitude. Using human gastric cancer cell lines as a model system, the PANs-based molecular classifier demonstrates its capacity to measure multiple ncRNAs in living cells and assesses the degree of cell differentiation. This approach can serve as a universal strategy for the classification of cancer cells during malignant transformation and tumor progression.

2.
Food Sci Nutr ; 12(4): 2917-2931, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628198

RESUMO

Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-ß1 (TGF-ß1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.

3.
Chem Commun (Camb) ; 60(34): 4609-4612, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38586987

RESUMO

A novel ECL immunosensor was developed for simultaneous determination of multiplex bladder cancer markers. DNA tetrahedra act as capture probes, while Ru-MOF@AuNPs and AuAgNCs act as signal reporters, yielding well-separated signals reflecting NUMA1 and CFHR1 concentrations. This strategy offers a new platform for clinical immunoassays, enabling simultaneous multiplex tumor marker detection.

4.
Sci Total Environ ; 922: 171220, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412880

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), a transformation product of tyre-derived 6-PPD, has been frequently detected in different environments. After 6-PPDQ exposure, we here aimed to examine dynamic lung bioaccumulation, lung injury, and the underlying molecular basis in male BALB/c mice. After single injection at concentration of 4 mg/kg, 6-PPDQ remained in lung up to day 28, and higher level of 6-PPDQ bioaccumulation in lung was observed after repeated injection. Severe inflammation was observed in lung after both single and repeated 6-PPDQ injection as indicated by changes of inflammatory cytokines (TNF-α, IL-6 and IL-10). Sirius red staining and hydroxyproline content analysis indicated that repeated rather than single 6-PPDQ injection induced fibrosis in lung. Repeated 6-PPDQ injection also severely impaired lung function in mice by influencing chord compliance (Cchord) and enhanced pause (Penh). Proteomes analysis was further carried out to identify molecular targets of 6-PPDQ after repeated injection, which was confirmed by transcriptional expression analysis and immunohistochemistry staining. Alterations in Ripk1, Fadd, Il-6st, and Il-16 expressions were identified to be associated with inflammation induction of lung after repeated 6-PPDQ injection. Alteration in Smad2 expression was identified to be associated with fibrosis formation in lung of 6-PPDQ exposed mice. Therefore, long-term and repeated 6-PPDQ exposure potentially resulted in inflammation and fibrosis in lung by affecting certain molecular signals in mammals. Our results suggested several aspects of lung injury caused by 6-PPDQ and provide the underlying molecular basis. These observations implied the possible risks of long-term 6-PPDQ exposure to human health.


Assuntos
Lesão Pulmonar , Masculino , Camundongos , Humanos , Animais , Lesão Pulmonar/induzido quimicamente , Camundongos Endogâmicos BALB C , Proteômica , Pulmão/patologia , Inflamação/patologia , Fibrose , Quinonas , Mamíferos
5.
Tob Induc Dis ; 21: 150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026501

RESUMO

INTRODUCTION: Traditional Chinese medicine (TCM) may have special advantages in facilitating smoking cessation, but consensus on effectiveness is lacking. We aim to comprehensively review, update, and refine current evidence on TCM effectiveness and safety. METHODS: Nine databases were searched from their inception up to 28 February 2023. Systematic reviews (SRs) and meta-analysis of TCM for smoking cessation were identified and retrieved. Additional databases and hand searches of RCTs from included SRs were performed for data pooling. Cochrane ROB tools and AMSTAR-2 were used to evaluate the methodological quality of RCTs and SRs, respectively. RCT data are presented as relative risks (RR) or mean differences (MD) with 95% confidence intervals (CI) using RevMan 5.4. RESULTS: Thirteen SRs involving 265 studies with 33081 participants were included. Among these 265 studies, 157 were duplicates (58.36%) and 52 were non-RCTs (19.62%). Combined with the remaining 56 RCTs identified through hand searches, 88 RCTs involving 12434 participants were finally included for data synthesis. All the SRs focused on acupoint stimulation, and the majority were of low or very low quality. The methodological quality of RCTs was either unclear or high risk. For continuous abstinence rate, TCM external interventions were better than placebo in 6 months to 1 year (RR=1.60; 95% CI: 1.14-2.25; I2=27%; n=5533 participants). Compared with placebo, TCM external application was effective in reducing nicotine withdrawal symptoms, and the effect was gradually stable and obvious in the fourth week (MD= -4.46; 95% CI: -5.43 - -3.49; n=165 participants). Twelve RCTs reported adverse events as outcome indicators for safety evaluation, and no serious adverse events occurred. CONCLUSIONS: Despite the methodological limitations of the original studies, our review suggests that TCM intervention shows potential effectiveness on the continuous abstinence rate. Extending the intervention time can enhance the effect of TCM on nicotine withdrawal symptoms. Referred to adverse events, more data for safety evaluation are required.

6.
Hortic Res ; 10(10): uhad177, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868621

RESUMO

The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.

7.
Heliyon ; 9(9): e19428, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674845

RESUMO

Lung fibroblasts are the major components in the connective tissue of the pulmonary interstitium and play essential roles in the developing of postnatal lung, synthesizing the extracellular matrix and maintaining the integrity of the lung architecture. Fibroblasts are activated in various disease conditions and exhibit functional heterogeneities according to their origin, spatial location, activated state and microenvironment. In recent years, advances in technology have enabled researchers to identify fibroblast subpopulations in both mouse and human. Here, we discuss pulmonary fibroblast heterogeneity, focusing on the developing, healthy and pathological lung conditions. We firstly review the expression profiles of fibroblasts during lung development, and then consider fibroblast diversity according to different anatomical sites of lung architecture. Subsequently, we discuss fibroblast heterogeneity in genetic lineage. Finally, we focus on how fibroblast heterogeneity may shed light on different pathological lung conditions such as fibrotic diseases, infectious diseases including COVID-19, and lung cancers. We emphasize the importance of comparative studies to illuminate the overlapping characteristics, expression profiles and signaling pathways of the fibroblast subpopulations across disease conditions, a better characterization of the functional complexity rather than the expression of a particular gene may have important therapeutic applications.

8.
Chem Commun (Camb) ; 59(78): 11736-11739, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703059

RESUMO

The development of enhanced strategies with excellent biocompatibility is critical for electrochemiluminescence (ECL) imaging of single cells. Here, we report an ECL imaging technique for a single cell membrane protein based on a Co3O4 nanozyme catalytic enhancement strategy. Due to the remarkable catalytic performance of Co3O4 nanozymes, H2O2 can be efficiently decomposed into reactive oxygen radicals, and the reaction with L012 was enhanced, resulting in stronger ECL emission. The anti-carcinoembryonic antigen (CEA) was coupled with nanozyme particles to construct a probe that specifically recognized the overexpressed CEA on the MCF-7 cell membrane. According to the locally enhanced visualized luminescence, the rapid ECL imaging of a single cell membrane protein was eventually realized. Accordingly, Co3O4 nanozymes with highly efficient activity will provide new insights into ECL imaging analysis of more biological small molecules and proteins.

9.
Medicine (Baltimore) ; 102(33): e34794, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37603519

RESUMO

Immunotherapy is a new treatment option for patients with esophageal squamous cell carcinoma (ESCC). However, no study has investigated the efficacy and safety of sintilimab combined with nanoparticle albumin-bound paclitaxel (Nab-PTX) and platinum as first-line treatment for metastatic ESCC. In this retrospective study, eligible patients with metastatic ESCC were administered sintilimab plus Nab-PTX, cisplatin, or nedaplatin for up to 4 to 6 cycles. Subsequently, patients without progressive disease (PD) continued to receive sintilimab every 3 weeks as maintenance treatment until unacceptable toxicity, PD, withdrawal of consent, or for up to 2 years. The primary endpoint was the objective response rate (ORR) and the secondary endpoints were progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and safety. A total of 22 patients diagnosed with metastatic ESCC were enrolled, 1 patient reached a complete response (CR), 15 patients achieved a partial response (PR), 4 patients had stable disease, and 2 had PD. The ORR was 72.7% (16/22) and the DCR was 90.9% (20/22). The time to response was 1.9 months (95% confidence interval [CI]:1.7-2.2 months). The median PFS was 8.9 months (95% CI, 7.1-10.7 months), and the median OS was 19.0 months. Exploratory biomarker analysis revealed that lactic dehydrogenase (LDH) was a potential marker for OS, and patients with high LDH levels had shorter mOS (13.0 months, 95% CI:7.5-18.5 months). Treatment-related adverse events (AEs) occurred in 21 patients (95.5%), most of which were grade 1 or 2. No treatment-related deaths occurred in this study. The results of this study suggested that sintilimab combined with Nab-PTX and platinum in patients with metastatic ESCC had a significantly high ORR and encouraging mPFS and mOS. LDH was a potential marker for OS, and the safety profile was manageable.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Platina , Estudos Retrospectivos
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 954-959, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37551461

RESUMO

OBJECTIVE: To investigate the cytogenetic characteristics and prognostic risk factors for elderly patients with newly diagnosed elderly acute myeloid leukemia(AML). METHODS: Cytogenetic test results of 76 elderly patients with AML admitted to the First Affiliated Hospital of the University of Science and Technology of China (Anhui Provincial Hospital) from April 2015 to December 2021 were retrospectively analyzed, and analyzed clinical characteristics of patients and risk factors influencing prognosis. RESULTS: According to cytogenetic risk stratification, 76 newly treated elderly AML patients were divided into the favorable, intermediate, and unfavorable groups with 6(7.9%), 58(76.3%), and 12(15.8%) cases, respectively. There was no significant difference in the patient's clinical characteristics and prognosis with the cytogenetics-risk classification groups. Correlation analysis showed that patients' objective response rate (ORR) was related to the age of onset and the mutation status of the CEBPA gene. Logistic regression analysis found that age ≥70 years was an independent risk factor for patients' ORR (OR=0.110, P=0.005). Remission determined the 1-year OS rate (OR=0.049, P=0.005). CONCLUSION: There is no significant difference in clinical characteristics among aged AML patients treated at initial treatment in different cytogenetic risk groups. The age of onset ≥70 years is the determinant of whether patients can obtain ORR, and the rate of ORR is closely related to the 1-year OS rate.

11.
Biomaterials ; 301: 122283, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639977

RESUMO

Despite advancements in the treatment of pulmonary cancer, the existence of mucosal barriers in lung still hampered the penetration and diffusion of therapeutic agents and greatly limited the therapeutic benefits. In this work, we reported a novel inhalable pH-responsive tetrahedral DNA nanomachines with simultaneous delivery of immunomodulatory CpG oligonucleotide and PD-L1-targeting antagonistic DNA aptamer (CP@TDN) for efficient treatment of pulmonary metastatic cancer. By precisely controlling the ratios of CpG and PD-L1 aptamer, the obtained CP@TDN could specifically release PD-L1 aptamer to block PD-1/PD-L1 immune checkpoint axis in acidic tumor microenvironment, followed by endocytosis by antigen-presenting cells to generate anti-tumor immune activation and secretion of anti-tumor cytokines. Moreover, inhalation delivery of CP@TDN showed highly-efficient lung deposition with greatly enhanced intratumoral accumulation, ascribing to the DNA tetrahedron-mediated penetration of pulmonary mucosa. Resultantly, CP@TDN could significantly inhibit the growth of metastatic orthotopic lung tumors via the induction of robust antitumor responses. Therefore, our work presents an attractive approach by virtue of biocompatible DNA tetrahedron as the inhalation delivery system for effective treatment of metastatic lung cancer.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Neoplasias Pulmonares/tratamento farmacológico , DNA , Concentração de Íons de Hidrogênio , Microambiente Tumoral
12.
Part Fibre Toxicol ; 20(1): 29, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468937

RESUMO

Chronic exposure to silica can lead to silicosis, one of the most serious occupational lung diseases worldwide, for which there is a lack of effective therapeutic drugs and tools. Epithelial mesenchymal transition plays an important role in several diseases; however, data on the specific mechanisms in silicosis models are scarce. We elucidated the pathogenesis of pulmonary fibrosis via single-cell transcriptome sequencing and constructed an experimental silicosis mouse model to explore the specific molecular mechanisms affecting epithelial mesenchymal transition at the single-cell level. Notably, as silicosis progressed, glycoprotein non-metastatic melanoma protein B (GPNMB) exerted a sustained amplification effect on alveolar type II epithelial cells, inducing epithelial-to-mesenchymal transition by accelerating cell proliferation and migration and increasing mesenchymal markers, ultimately leading to persistent pulmonary pathological changes. GPNMB participates in the epithelial-mesenchymal transition in distant lung epithelial cells by releasing extracellular vesicles to accelerate silicosis. These vesicles are involved in abnormal changes in the composition of the extracellular matrix and collagen structure. Our results suggest that GPNMB is a potential target for fibrosis prevention.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Transcriptoma , Silicose/genética , Silicose/patologia , Pulmão , Fibrose Pulmonar/metabolismo , Dióxido de Silício/metabolismo , Células Epiteliais , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal
13.
Anal Chem ; 95(30): 11440-11448, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478154

RESUMO

The development of noninvasive and sensitive detection methods for the early diagnosis and monitoring of bladder cancer is critical but challenging. Herein, an ultrasensitive electrochemiluminescence (ECL) immunosensor that uses Ru(bpy)32+-metal-organic framework (Ru-MOF) nanospheres and a DNA tetrahedral (TDN) probe was established for bladder cancer marker complement factor H-related protein (CFHR1) detection. The synthesized Ru(bpy)32+-metal-organic frameworks (Ru-MOFs) served as a linked substrate for immobilization of AuNPs and antibody (Ab2) to prepare the ECL signal probe (Ru-MOF@AuNPs-Ab2), exhibiting a stable and strengthened ECL emission. At the same time, the inherent advantages of TDN probes on the electrode as the capture probe (TDN-Ab1) improve the accessibility of targets to probes. In the presence of CFHR1, the signal probe Ru-MOF@AuNPs-Ab2 was modified on the electrode through immune binding, thereby obtaining an outstanding ECL signal. As expected, the developed ECL immunosensor exhibited splendid performance for CFHR1 detection in the range of 0.1 fg/mL to 10 pg/mL with a quite low detection limit of 0.069 fg/mL. By using the proposed strategy to detect CFHR1 from urine, it showed acceptable accuracy, which can effectively distinguish between bladder cancer patients and healthy samples. This work contributes to a novel, noninvasive, and accurate method for early clinical diagnosis of bladder cancer.

14.
Anal Chem ; 95(23): 8906-8913, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265323

RESUMO

Developing highly active and sensitive nanozymes for biothiol analysis is of vital significance due to their essential roles in disease diagnosis. Herein, two metal ion-doped carbon dots (M-CDs) with high peroxidase-like activity were designed and prepared for biothiol detection and identification through the colorimetric sensor array technique. The two M-CDs can strongly catalyze the decomposition of H2O2, accompanied by color changes of 3,3',5,5'-tetramethylbenzidine (TMB) from colorless to blue, indicating peroxidase-mimicking activities of M-CDs. Compared with pure carbon dots (CDs), M-CDs exhibited enhanced peroxidase-like activity owing to the synergistic effect between metal ions and CDs. However, due to the strong binding affinity between biothiols and metal ions, the catalytic activities of M-CDs could be inhibited by different biothiols to diverse degrees. Therefore, using TMB as a chromogenic substrate in the presence of H2O2, the developed colorimetric sensor array can form differential fingerprints for the three most important biothiols (i.e., cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)), which can be accurately discriminated through pattern recognition methods (i.e., hierarchical clustering analysis (HCA) and principal component analysis (PCA)) with a detection limit of 5 nM. Moreover, the recognition of a single biothiol with various concentrations and biothiol mixtures was also realized. Furthermore, actual samples such as cells and sera can also be well distinguished by the as-fabricated sensor array, demonstrating its potential in disease diagnosis.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Peróxido de Hidrogênio , Pontos Quânticos/química , Cisteína , Metais , Peroxidases , Colorimetria/métodos
15.
Nat Hum Behav ; 7(8): 1357-1370, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386110

RESUMO

Human longevity correlates with socio-economic status, and there is evidence that educational attainment increases human lifespan. However, to inform meaningful health policies, we need fine-grained causal evidence on which dimensions of socio-economic status affect longevity and the mediating roles of modifiable factors such as lifestyle and disease. Here we performed two-sample Mendelian randomization analyses applying genetic instruments of education, income and occupation (n = 248,847 to 1,131,881) to estimate their causal effects and consequences on parental lifespan and self-longevity (n = 28,967 to 1,012,240) from the largest available genome-wide association studies in populations of European ancestry. Each 4.20 years of additional educational attainment were causally associated with a 3.23-year-longer parental lifespan independently of income and occupation and were causally associated with 30-59% higher odds of self-longevity, suggesting that education was the primary determinant. By contrast, each one-standard-deviation-higher income and one-point-higher occupation was causally associated with 3.06-year-longer and 1.29-year-longer parental lifespans, respectively, but not independently of the other socio-economic indicators. We found no evidence for causal effects of income or occupation on self-longevity. Mediation analyses conducted in predominantly European-descent individuals through two-step Mendelian randomization suggested that among 59 candidates, cigarettes per day, body mass index, waist-to-hip ratio, hypertension, coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, type 2 diabetes, heart failure and lung cancer individually played substantial mediating roles (proportion mediated, >10%) in the effect of education on specific longevity outcomes. These findings inform interventions for remediating longevity disparities attributable to socio-economic inequality.


Assuntos
Diabetes Mellitus Tipo 2 , Longevidade , Humanos , Longevidade/genética , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , População Europeia , Classe Social
16.
Chem Commun (Camb) ; 59(27): 4047-4050, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36928909

RESUMO

Herein, we present a poly-adenine (polyA)-mediated programmably engineered FRET-nanoflare for ratiometric intracellular ATP imaging with anti-interference capability. The programmable polyA attachment is advantageous in enhancing the signal response for ATP. Moreover, the FRET-based nanoflare is capable of avoiding false-positive signals due to probe degradation in a complex environment, which has great potential for clinical diagnosis.


Assuntos
Diagnóstico por Imagem , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Trifosfato de Adenosina , Corantes Fluorescentes
17.
ACS Appl Mater Interfaces ; 15(12): 15250-15259, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36941806

RESUMO

Spatiotemporal monitoring of multiple low-abundance messenger RNAs (mRNAs) is vitally important for the diagnosis and pathologic analysis of cancer. However, it remains a clinical challenge to monitor and track multiple mRNAs location simultaneously in situ at subcellular level with high efficiency. Herein, we proposed polyA-mediated dual-color sticky flares for simultaneous imaging of two kinds of intracellular mRNA biomarkers. Two kinds of fluorescent DNA specific for GalNac-T mRNA and c-Myc mRNA were functionalized onto gold nanoparticles (AuNPs) through efficient polyadenine (polyA) attachment. By tuning polyA length, the lateral spacing and densities of DNA on AuNPs could be precisely engineered. Compared to the traditional thio-DNA-modified nanoprobes, the uniformity, detection sensitivity, and response kinetics of sticky flares were greatly improved, which enables live-cell imaging of mRNAs with enhanced efficiency. With a sticky-end design, the fluorescent DNA could dynamically trace mRNAs after binding with target mRNAs, which realized spatiotemporal monitoring of subcellular mRNAs in situ. Compared to one target mRNA imaging mode, the multiple target imaging mode allows more accurate diagnosis of cancer. Furthermore, the proposed polyA-mediated dual-color sticky flares exhibit excellent cell entry efficiency and low cytotoxicity with a low-cost and simple assembling process, which provide a pivotal tool for multiple targets imaging in living cells.


Assuntos
Ouro , Nanopartículas Metálicas , RNA Mensageiro/metabolismo , DNA
18.
Commun Biol ; 6(1): 136, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732560

RESUMO

Pulmonary fibrosis (PF) is a form of progressive lung disease characterized by chronic inflammation and excessive extracellular matrix (ECM) deposition. However, the protein changes in fibrotic ECM during PF and their contribution to fibrosis progression are unclear. Here we show that changes in expression of ECM components and ECM remodeling had occurred in silica-instilled mice. The macrophage-derived glycoprotein nonmetastatic melanoma protein B (GPNMB) captured by fibrotic ECM may activate resident normal fibroblasts around the fibrotic foci. Functional experiments demonstrated the activation of fibroblasts in fibrotic ECM, which was alleviated by GPNMB-neutralizing antibodies or macrophage deletion in the ECM of silica-instilled mice. Moreover, the Serpinb2 expression level was increased in fibroblasts in fibrotic ECM, and the expression of CD44 was increased in silica-instilled mice. In conclusion, macrophage-derived GPNMB is trapped by fibrotic ECM during transport and may activate fibroblasts via the CD44/Serpinb2 pathway, thus leading to the further development of fibrosis.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Matriz Extracelular/metabolismo , Fibrose , Pulmão/patologia , Dióxido de Silício , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
19.
Chem Commun (Camb) ; 59(7): 912-915, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594872

RESUMO

A rectangle DNA origami nanostructure equipped with doxorubicin-derived prodrugs targeting a tumor cell-specific enzyme (NQO1) is constructed. Combining the high prodrug payload of DNA origami and NQO1-activated chemotherapy, this nanosystem presents therapeutic selectivity for NQO1-overexpressing MCF-7 cells over healthy L02 cells, offering a potent strategy for precision cancer therapy.


Assuntos
Antineoplásicos , Nanoestruturas , Pró-Fármacos , Humanos , Antineoplásicos/química , Linhagem Celular Tumoral , DNA/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , NAD(P)H Desidrogenase (Quinona) , Nanoestruturas/química , Pró-Fármacos/química
20.
Nat Commun ; 14(1): 489, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717587

RESUMO

Vascular repair is considered a key restorative measure to improve long-term outcomes after ischemic stroke. N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNAs, functionally mediates vascular repair. However, whether circular RNA SCMH1 (circSCMH1) promotes vascular repair by m6A methylation after stroke remains to be elucidated. Here, we identify the role of circSCMH1 in promoting vascular repair in peri-infarct cortex of male mice and male monkeys after photothrombotic (PT) stroke, and attenuating the ischemia-induced m6A methylation in peri-infarct cortex of male mice after PT stroke. Mechanically, circSCMH1 increased the translocation of ubiquitination-modified fat mass and obesity-associated protein (FTO) into nucleus of endothelial cells (ECs), leading to m6A demethylation of phospholipid phosphatase 3 (Plpp3) mRNA and subsequently the increase of Plpp3 expression in ECs. Our data demonstrate that circSCMH1 enhances vascular repair via FTO-regulated m6A methylation after stroke, providing insights into the mechanism of circSCMH1 in promoting stroke recovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Fosfatidato Fosfatase , RNA Circular , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Células Endoteliais/metabolismo , Infarto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA